Sequence-dependent enhancement of hydrolytic deamination of cytosines in DNA by the restriction enzyme PspGI

نویسندگان

  • Michael Carpenter
  • Pradeep Divvela
  • Vera Pingoud
  • Janusz Bujnicki
  • Ashok S. Bhagwat
چکیده

Hydrolytic deamination of cytosines in DNA creates uracil and, if unrepaired, these lesions result in C to T mutations. We have suggested previously that a possible way in which cells may prevent or reduce this chemical reaction is through the binding of proteins to DNA. We use a genetic reversion assay to show that a restriction enzyme, PspGI, protects cytosines within its cognate site, 5'-CCWGG (W is A or T), against deamination under conditions where no DNA cleavage can occur. It decreases the rate of cytosine deamination to uracil by 7-fold. However, the same protein dramatically increases the rate of deaminations within the site 5'-CCSGG (S is C or G) by approximately 15-fold. Furthermore, a similar increase in cytosine deaminations is also seen with a catalytically inactive mutant of the enzyme showing that endonucleolytic ability of the protein is dispensable for its mutagenic action. The sequences of the mutants generated in the presence of PspGI show that only one of the cytosines in CCSGG is predominantly converted to thymine. Our results are consistent with PspGI 'sensitizing' the cytosine in the central base pair in CCSGG for deamination. Remarkably, PspGI sensitizes this base for damage despite its inability to form stable complexes at CCSGG sites. These results can be explained if the enzyme has a transient interaction with this sequence during which it flips the central cytosine out of the helix. This prediction was validated by modeling the structure of PspGI-DNA complex based on the structure of the related enzyme Ecl18kI which is known to cause base-flipping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency.

APOBEC3G (A3G) is a host-expressed protein that inactivates retroviruses through the mutagenic deamination of cytosines (C) to uracils (U) in single-stranded DNA (ssDNA) replication products. A3G prefers to deaminate cytosines preceded by a cytosine (5'CC), whereas all other A3 proteins target cytosines in a 5'TC motifs. Structural and mutational studies have mapped the dinucleotide deamination...

متن کامل

DNA base flipping by both members of the PspGI restriction–modification system

The PspGI restriction-modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the cent...

متن کامل

Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli.

An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5' CCWGG 3' (W is A or T). PspGI digestion can be carried out at 65 to 85 degrees C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR and pspGIM) were cloned in Escherichia ...

متن کامل

Enzyme-mediated cytosine deamination by the bacterial methyltransferase M.MspI.

Most prokaryotic (cytosine-5)-DNA methyltransferases increase the frequency of deamination at the cytosine targeted for methylation in vitro in the absence of the cofactor S-adenosylmethionine (AdoMet) or the reaction product S-adenosylhomocysteine (AdoHcy). We show here that, under the same in vitro conditions, the prokaryotic methyltransferase, M.MspI (from Moraxella sp.), causes very few cyt...

متن کامل

Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure.

Hydrolytic deamination of DNA-cytosines into uracils is a major source of spontaneously induced mutations, and at elevated temperatures the rate of cytosine deamination is increased. Uracil lesions are repaired by the base excision repair pathway, which is initiated by a specific uracil DNA glycosylase enzyme (UDG). The hyperthermophilic archaeon Archaeoglobus fulgidus contains a recently chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006